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Abstract 

The problem of describing collective atomic motion in 
molecular crystals is reviewed from the point of view of 
normal coordinate analysis in its mean square amplitude 
form. There are two related problems with this approach: 
(1) The apparent lack of information on correlation 
between atomic motion inherent in atomic displacement 
parameters as determined from elastic diffraction experi- 
ments. (2) The need to identify molecular deformation 
coordinates associated with low frequencies and there- 
fore with large amplitudes. Within the limits of the 
harmonic approximation the first problem can be solved 
by considering mean square amplitudes obtained at 
different temperatures. The second problem can be 
approached by analyzing and visualizing the deviations 
of atomic displacement parameters from rigid body 
behavior or, alternatively, by looking for static deforma- 
tions of molecular fragments closely related in structure 
to the molecule whose atomic displacement parameters 
are to be analyzed. Some of the above points are 
illustrated with the help of the atomic displacement 
parameters of H 8 S i 8 0 1 2 ,  determined at 100 and 10 K. 

1. Introduction 

The notion that crystals are regular and undeformable 
arrangements of motionless atoms or of rigid and 
immobile molecules is no more than a crude first 
approximation to the description and understanding of 
the crystalline state of matter. Upon closer inspection at 
the microscopic level, a rich spectrum of diverse types of 
motion becomes apparent. These motions include all that 
are also observed in the liquid and gaseous states: 
chemical reaction, diffusion, rotation, translation and 
vibration, albeit with characteristic differences between 
the different phases. Correspondingly, the experimental 
techniques used to investigate these motions are similar 
in all phases (Braga, 1992): mainly spectroscopy and 
diffraction, inelastic as well as elastic. 

All motion has two aspects: the displacements of the 
moving particles in space on the one hand and the 
energies (or corresponding time scales) associated with 
them on the other. Spectroscopic and inelastic diffraction 
experiments probe primarily the energetic aspects of 
motion, i.e. its eigenvalue spectrum, whereas elastic 
diffraction experiments probe atomic positional displace- 
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ments, i.e. the eigenvector characteristics of motion. The 
denominator common to both of these aspects is the 
energy surface governing the motion. 

Here we shall concentrate on atomic positional 
displacement parameters in the crystal, specifically their 
interpretation in terms of internal, librational and 
translational vibrations of molecules. We shall deal with 
these matters from the point of view of vibrational 
analysis and attempt to relate the interpretation of IR and 
Raman spectra in terms of interatomic forces, with a 
corresponding analysis of atomic displacement para- 
meters from elastic diffraction experiments. The various 
difficulties inherent in this approach and solutions to 
them are reviewed, and illustrated with an example. 

The information on atomic displacements in crystals is 
usually derived from interpretations of elastic or Bragg 
diffraction experiments using X-rays or neutrons. It is 
assumed that the crystal is built from atoms which are 
characterized by their electron or nuclear density at rest, 
their most probable or mean position xo and a probability 
density function (p.d.f.) describing displacements from 
this position in a harmonic or anharmonic potential. It is 
common and often sufficient to assume an anisotropic 
harmonic potential which implies an anisotropic 
Gaussian form for the p.d.f. 

p.d.f.(x - Xo) = (2yr)-3/2(det U-I) 1/2 
(1) 

× exp[(x - xo)ru- l (x  - xo)/2 ]. 

Here U is the well known anisotropic displacement 
tensor; the diagonal components are the mean square 
displacements along the unit-cell axes and the 
off-diagonal elements are related to the correlation c 0 
of simultaneous displacements along pairs of axes 

cij = UiJ(UiiUjj) I/z. (2) 

A list of anisotropic displacement parameters, i.e. of the 
elements of U, is only slightly more informative than a 
list of atomic coordinates. Coordinates themselves do not 
provide direct information on the mutual interactions of 
atoms. The chemical interpretation of atomic coordinates 
is a relatively simple matter, however, since it is based on 
a straightforward transformation to bond distances, 
angles and other chemically meaningful coordinates 
which may be easily compared with each other and with 
results from models such as quantum chemical calcula- 
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tions. Although anisotropic displacement parameters 
describe the degree and direction of motions of 
individual atoms, they provide little information on 
interatomic interactions, i.e. on cooperative atomic 
displacements in the crystal and the forces associated 
with them. 

2. Ways of looking at motion in crystals 

Given this deficiency of the anisotropic displacement 
parameters, it is useful to survey several methods of 
studying atomic motion in crystals. Adopting the most 
general point of view, a crystal is considered as a giant 
molecule composed of a large number of (atomic) 
particles - of the order of Avogadro's number - and 
with macroscopic dimensions. Each atom may interact-  
to varying degrees - with all others, or at least with a 
large number of its neighbors located within a certain 
distance (e.g. 10,A). Describing the dynamics of such a 
system is a formidable problem, which is only somewhat 
alleviated by taking translational and other symmetries of 
the crystal into account. The theory of lattice dynamics 
provides the necessary physical and mathematical 
models (see, for example, Willis & Pryor, 1975; Decius 
& Hexter, 1977). It is used mainly to interpret inelastic 
neutron scattering experiments; its practical application is 
limited to crystal structures with fairly small unit cells, 
typically ionic and molecular compounds containing one 
or a few dozen atoms at most. 

At the other extreme, only a single atom is considered. 
This atom is assumed to move in the average potential 
field of all of its neighbors. This is known as the atomic 
mean field model (a.m.f.m.); it is the basis of all 
descriptions of atomic motion in terms of harmonic and 
anharmonic, isotropic and anisotropic displacement 
parameters commonly being used to interpret elastic 
diffraction experiments. 

Many crystal structures can be considered as being 
built from discernable entities - molecules. In these 
crystals interatomic interactions may be divided into 
strong ones, those within molecules, and weaker ones 
between molecules. This suggests the possibility of 
considering a model of intermediate complexity, i.e. 
motions of a flexible molecule in the averaged environ- 
ment of all neighboring molecules in the crystal. Such a 
model is more informative - and also more complicated 
- than the atomic mean field model but less general - and 
substantially s imp le r -  than the lattice dynamical one. In 
analogy to the a.m.f.m., it may be named the molecular 
mean field model (m.m.f.m.). The necessary physical and 
mathematical theory - discussed below - is closely 
related to the well known theory of molecular normal 
coordinate analysis (Wilson, Decius & Cross, 1955). 

To set the stage, the motions of a molecule in the 
molecular mean field are compared with those of an 
isolated molecule. The isolated molecule translates and 
rotates freely, whereas a molecule in the crystal - 

constrained by its environment - performs translational 
and librational oscillations about its equilibrium position 
and orientation. In both cases the molecule undergoes 
intramolecular motions, including rotation about bonds, 
deformation of bond angles and bond distances or a 
combination of these. In a free molecule these motions 
are the result of intramolecular interatomic interactions 
only, whereas in the crystal these interactions may be 
modified to a larger or smaller extent by the molecular 
environment, the molecular mean field. All these motions 
imply correlated displacements of several or all the atoms 
and yet, as pointed out above, the anisotropic displace- 
ment parameters from elastic diffraction experiments 
provide no direct information about these correlations. 
What can we do? 

3. Retrieving the missing information 

As mentioned in the Introduction, there are basically two 
methods of analyzing motion: one is based on energy, i.e. 
on normal coordinate analyses of vibrational frequencies 
(Wilson, Decius & Cross, 1955), the other on displace- 
ments, i.e. on normal coordinate analysis of mean square 
amplitudes (Cyvin, 1968). The problem of insufficient 
information is encountered in both, albeit in different 
guise. An overview of the two approaches, of their 
relationship, of their inherent problems and of the 
approximations employed to overcome them may there- 
fore be instructive. 

3.1. Normal coordinates from vibrational spectroscopy 

The energy required for atomic displacements x i from 
equilibrium is, in harmonic approximation 

V =  1/2 ~)--~ ~--~ x i x J O = x r f x / 2 ,  (3) 
i j 

wheref i  are the force constants for the displacement of a 
given atom in a given direction and f~ are the interaction 
constants for simultaneous displacements of an atom in 
more than one direction or of more than one atom in the 
same or different directions. The observable frequencies 
v k are related to the force constants through the 
eigenvalue problem 

If m -1 - J. II = 0, (4) 

where f is the symmetric matrix of force constants f j ,  m 
is a diagonal matrix of atomic masses m i, I is the identity 
matrix and 2 is a vector with elements 47rZvk 2 (in s-2). 
Equation (4) serves the purpose of calculating the force 
constants from the observed frequencies (Wilson, Decius 
& Cross, 1955, Ch. 2). 

There is a problem, however: for an n-atomic molecule 
the number of unknown independent elements f j  is, in 
general, 3n(3n + 1)/2 [or (3n - 6)(3n - 5)/2 if rotation 
and translation are unconstrained], whereas the number 
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of observable frequencies is only 3n (or 3 n -  6). Thus, 
the problem of calculating f0 from u k is heavily 
underdetermined. The chemical solution to the problem 
is to measure the spectra of a large number of isotopically 
substituted molecules with different v k, different m, but 
identical f0" Given a sufficient number of observed 
frequencies, the force constants can be determined. 

The method of isotopic substitution is laborious and - 
in practice - often insufficient to solve (4). In such cases 
the force constant matrix f can be determined only 
approximately. There are many types of approximations, 
mostly based on empirical chemical considerations. In 
most of these cases, the problem is transformed from 
positional to some type of chemical deformation 
coordinate p~. The potential energy for molecular 
deformation is now 

V =  1/2~_~p~pjF~j=prVp/2.  (5) 
i 

The elements F,~ are the force constants for bond 
stretching, angle deformation, etc. F o are interaction 
constants. F is related to the frequencies through an 
eigenvalue problem, popularized by Wilson, which is 
analogous to (4) (Wilson, Decius & Cross, 1955, Ch. 4) 

IF G -  2 I I -  o. (6) 

G depends only on the known geometric arrangement of 
the atoms and on their masses. An approximate solution 
to this equation is obtained by judiciously identifying 
elements of F, e.g. from symmetry and chemical 
considerations, which are known or suspected to be 
equal, or zero, or small. In this way, the number of 
unknowns is reduced and the symmetric 3n x 3n matrix 
F can often be factored into small subproblems which are 
correspondingly easier to solve. 

3.2 Mean square amplitudes from normal coordinates 

Solving (4) leads not only to the force constantsfj,  but 
also to eigenvectors I~ for each normal mode k (Cyvin, 
1968). The matrix I x of eigenvectors obeys the condition 

!,(! x)r = m- l .  (7) 

The elements l ;~ represent the relative displacement of 
atom i in mode k. They are proportional to the absolute 
atomic displacements uik. The temperature-dependent 
proportionality factor is [(h/8rr2vk)coth(hvk/2kt)] I/2. 
From the atomic displacements it is only a small step 
to anisotropic displacement parameters. The mean square 
amplitudes attributable to a single normal mode are 

~ = uik ujk. (8) 

The total mean square amplitudes X~0. are simply the sum 
over all normal modes. Due to the reciprocal dependence 
on v k, the largest contributions to ~ are from the 
vibrations with the smallest frequencies. 

The resulting 2yX-matrix is symmetric and of the 
dimensions 3n x 3n. It is best considered to be built from 
n 2 (3 × 3) blocks, with n on the diagonal of E x and the 
remainder in off-diagonal positions. The n diagonal 
blocks are nothing other than atomic mean square 
displacement tensors U, which can also be obtained 
directly from elastic diffraction experiments; the off- 
diagonal blocks contain the information on correlations 
of motion between atoms and are not obtainable from 
elastic diffraction. Note that L" is temperature depen- 
dent, as are the u's. 

3.3. Normal coordinates from mean square amplitudes 

Given the fact that the mean square amplitudes may be 
obtained from vibrational frequencies via an intermediate 
determination of force constants, the question arises 
whether the reverse is also possible, i.e. to determine the 
frequencies and force constants from mean square 
amplitudes. The answer is yes and there are close 
analogies between the two approaches (Cyvin, 1968). 
Most importantly, there is an analogous eigenvalue 
equation 

IL- 'Xm-~II = 0 ,  (9) 

where ~ is a vector with elements (h/87r2v~) 
coth(hv~/2kt). 

The problem is again of the dimensions 3n × 3n. In an 
elastic diffraction experiment the unknown quantities are 
the off-diagonal (3 × 3) blocks of Z 'x, with 3n(3n - 1)/2 
independent elements and the 3n frequencies v k. The 
observable quantities are the atomic anisotropic displace- 
ment parameters, i.e. the diagonal (3 × 3) blocks of 2? x, 
only 6n in all. Thus, this is another case of heavy 
underdetermination and (9) can be solved only approxi- 
mately. The methodology is analogous to that described 
in §3.1. It relies on chemical coordinates and the 
appropriate simplifications. The corresponding eigen- 
value equation is (Cyvin, 1968) 

12YG -~ -311  = 0 .  (10) 

The elements of X' are the mean square amplitudes of 
libration, translation and internal motions. E and X TM are 
related by the transformation 

,SX=A,SA r. (11) 

The transformation matrix A depends only on the known 
geometry of the molecule. Each of its elements relates an 
internal to an atomic displacement coordinate. In general, 
X 'x and 2Y are of the dimensions 3n x 3n. In practice, 
however, only a small number of internal coordinates are 
considered, those involved in the normal vibrations of 
low energy and associated with large mean square 
amplitudes. Thus, similar to the case of the determination 
of F, where judiciously selected elements F 0 are assumed 
to be zero, here some elements 2~ 0 are neglected. This 
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affects the transformation (11) as follows (Fig. 1). As 
mentioned above, Z 'x contains the anisotropic displace- 
ment parameters Ui . . . . .  U, on the diagonal. The matrix 
Z: of internal mean square displacements is divided into 
four parts: T, L, 27m), ZT~ and the corresponding off- 
diagonal blocks S, Z'ta etc. T, L and S contain the mean 
square amplitudes ot ~ translation, libration and screw 
coupling well known from rigid body analysis (Scho- 
maker & Trueblood; 1968); ,U~ contains the mean 
square amplitudes for the internal coordinates p with 
large amplitude motions; Z:~p and ,Utp are the coupling 
tensors between libration, translation and internal 
motion. Finally ,U,~, ~7~, ZT~ and ,Urn are associated 
with the motions that are known or assumed to be small. 
Matrix A can be subdivided correspondingly. Provided 
that the r important internal coordinates can be identified, 
transformation (11) takes the modified form 

E x = A' ~ '  (A') r. (12) 

Z "  is now of the dimensions r x r, and A' is of the 
dimensions 3n x r since all elements of Z' and A 
associated with q are assumed to be zero. 

Most schemes of interpreting anisotropic displacement 
parameters attempt to determine r(r + 1)/2 independent 
elements of Z" from the 6n observable elements of ,U x. 
This is usually achieved by a least-squares calculation 
with the minimizing conditions 

0 
O.~,s, ~i>j ~ {~ i j - [A ' .~ ' (A ' ) r ] i j }2wi j :O ,  ( 1 3 )  

where ZT~ are the components of the anisotropic 
displacement parameters U, wq is a weight, and ,~tst a r e  

the determinable elements of ,U'. Equations (12) and (13) 
are general and apply to any combination of translational, 
librational and internal displacements (He & Craven, 
1985, 1993). In the simple case where only translation 
and libration are considered, r -  6 and the transforma- 
tion A' is identical to E as given by Johnson (1970a), and 
is related to the arrays H and G in the treatment of 
Schomaker & Trueblood (1968). 

The cases of internal rotation about single bonds or 
translational oscillation of one part of a molecule relative 
to another have been discussed in some detail. In both 
cases it is usually assumed that internal motion affects 

only the rotating (Dunitz & White, 1973; Johnson, 
1970b) or translating group (Btirgi, 1989). Thus, internal 
motion is associated with an angular or linear momentum 
of the molecule as a whole and is therefore not 
orthogonal to overall libration and translation. In terms 
of the above formalism, the columns Ap of A referring to 
internal rotation or translation are no longer orthogonal to 
those referring to overall rotation or translation. This 
complication has been avoided by He & Craven (1985, 
1993). 

In practice, the least-squares determination of ,U' is 
beset with a number of difficulties. A well known one is 
the indeterminacy of the trace of S in rigid body analysis 
(Schomaker & Trueblood, 1968). As internal coordinates 
are added to the model, additional indeterminacies, 
primarily in the Z'tp and ~lp couplings, have to be dealt 
with (Schomaker & Trueblood, 1984; BUrgi, 1989). A 
common approximation is to assume that some or all of 
these coupling elements are zero [see Dunitz & White 
(1973), He & Craven (1985, 1993)]. 

In view of these shortcomings, it is preferable to 
interpret anisotropic displacement parameters on the 
basis of (9) and (10), provided, of course, that sufficient 
experimental information is available. One possibility is 
to introduce spectroscopic measurements, i.e. some 
elements of 3. Second, one may resort to the temperature 
dependence of the elements of Z; 'x and Z', i.e. solve (9) 
using anisotropic displacement parameters measured at 
different temperatures, as will be discussed in more detail 
below. There are problems with both these possibilities: 
Measured IR and Raman frequencies (pertaining to the 
origin of the Brillouin zone) may not be representative of 
the frequencies corresponding to the molecular mean 
field (which are some type of average over the entire 
Brillouin zone) and the mean field in a real crystal may 
be neither completely harmonic nor completely indepen- 
dent of temperature. We are not aware, however, of any 
serious attempt at solving (9) along the two lines 
suggested above. 

As an example, the full determination of the elements 
of T, L and S (and, therefore, of the trace of S) is 
sketched. At any temperature t 

T(t) S(t) ] = liB(t, vk)(li)r. 
R ' ( t ) - -  S T(t) L(t)J (14) 

U(I) 

\ 

\ 

U(n) 

Atl All Apl Aql T S ~.tp Y~tq Atl . . . . . .  Am 
I ~ i | s T 
I I I I L ~-~-Ip Y~-Iq A l l -  AIn 

I I I [ Y~-pt T i Y~-pl T y~.pp y~pq Apl - Apn 

I ! I l - T T 
Atn AIn Apn Aqn ~.~qt T y~.ql ~_,qp Y~.qq A q l - -  Aqn 

Fig. 1. Transformation from internal mean square amplitudes E to positional mean square amplitudes ~7 x (Z '~ = A EAr). The matrices A and 27 are 
partitioned into blocks corresponding to molecular translation (t), libration (I) and internal motion (p and q; see text). 
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The matrix I i contains the eigenvectors associated with 
the diagonal matrix of eigenvalues 3(t, vk). Both I i and v k 
are temperature independent; I i has to obey the side 
condition 

I i(I i)r = G, (15a)  

and is related to I x through 

I x = A' I i (15b) 

Equation (15a) provides 21 conditions among the 36 
unknown elements of i ~. Together with the six 
frequencies v k there are 21 unknowns to be determined 
from the 20 independent elements of T(t), L(t) and S(t) 
(Schomaker & Trueblood, 1968). With data from a single 
temperature, (14) is underdetermined. If data at more 
than one temperature are available, the number of 
observations exceeds the number of unknowns which is 
still the same. To see how this works it is necessary to 
consider the dependence of ~k(t, vk)=  h/87r2vkcoth - 
(hvk/2kt) on temperature. At absolute zero there is no 
dependence, 8 k =h/8rr2vk; in the high-temperature 
classical limit, when 2kt >> hv k, there is a linear 
dependence, i.e. 8k(t, v k ) =  kt/4zr2vk 2. Analogous argu- 
ments apply to Z' and ,U x. The effect of all this is that the 
elements of 3k, Z' and ,U x increase by different factors 
between the low- and high-temperature regimes (Fig. 2). 
As a consequence, the principal values of the anisotropic 
displacement parameters may also increase by different 
factors and their principal directions (eigenvectors), i.e. 
the orientation of the equiprobability ellipsoids [see 
§3.4, (19)], may change. It is important, therefore, that at 
least one determination of Z: or Z 'x be made at 
sufficiently low temperature for which the functions 
8k(t, v~) are not in their classical linear regime; if they 
were, observational equations (14) at different t would be 
proportional to t itself, i.e. linearly dependent, and no 

1 

0 9  

O.8 

O.7 
~T 
°< 0.6 h / ~ .  -"" kt/( 47r~ v2) 

-~ 0.5 

0.4 

0.3 

0.2 . ' "  _ . . . . . . . . .  

0.1 . . . . . . . . . . .  I(X) c m  i 

0 ' "-'- . . . . . .  i 

0 2'0 ' 41) ' ~)  ' 8'0 ' 100 

T(K) 

Fig. 2. Temperature dependence of 3(t, vk) 2 = h/8n vkcoth(hvk/2kt ). 
The zero-point mean square amplitude per mass unit is 
3(0, vk) = h/8~r 2v k. In the high-temperature classical regime 

4 2 (kt > hvk)8 .~ k t /4n2v ,  2. The plot  shows  8 in uni ts  o f  10-  A for 
to k = vk/c o f  50 and  1 0 0 c m  -I  (c: ve loc i ty  o f  light).  

new information would be gained. These arguments 
should also be applicable to the determination of those 
elements in ,Utp, Zip and Z'pp which are not obtainable 
from data at a single temperature (Schomaker & 
Trueblood, 1984; Biirgi, 1989). 

From the discussion in this section the following 
conclusions may be drawn: (1) A basis for the 
interpretation of anisotropic displacement parameters in 
terms of collective intramolecular motion of atoms in 
molecular crystals is provided by the theory of normal 
coordinate analysis in its mean square amplitudes form 
and its molecular mean field approximation. (2) There 
are two main problems in such analyses. The first is to 
find the relevant internal coordinates, i.e. those with low 
force constants, involved in low vibrational frequencies 
and with correspondingly large amplitudes of vibration. 
The second problem is that at a given temperature the 
atomic anisotropic displacement parameters alone are 
insufficient for a normal coordinate analysis or, ex- 
pressed differently, that not all of the necessary internal 
mean square amplitude quantities are determinable from 
the available anisotropic displacement parameters, even 
if only a limited number of relevant internal coordinates 
is considered. Most of these problems have not been 
studied in a general and systematic way. (3) The outline 
in this section suggests experiments which may help to 
solve some of the above problems and which, to the best 
of our knowledge, have not been seriously pursued. 
These experiments include studying the effects of 
temperature on the orientation and magnitudes of the 
anisotropic displacement parameters, as well as the 
simultaneous interpretation of anisotropic displacement 
parameters and vibrational frequencies, i.e. of geo- 
metrical and energetic observables. 

3.4. Identifying molecular flexibility in general and the 
relevant internal coordinates in particular 

As indicated above, interpretation of anisotropic 
displacement parameters in the absence of spectroscopic 
or other nondiffraction information requires some 
knowledge about the types of low-energy motions which 
account for the major part of the anisotropic displace- 
ment parameters. It is usually assumed that translation 
and libration are among these. There are various methods 
to test for additional internal motion. One method is the 
rigid molecule test (Rosenfield, Trueblood & Dunitz, 
1978) based on Hirshfeld's rigid bond test (Hirshfeld, 
1976). It makes use of the fact that for a rigid molecule, 
performing translation and libration only, the mean 
square amplitudes of any pair of atoms in a molecule 
along their internuclear unit vector n 0 are equal, i.e. their 
difference is zero 

A U i )  : n i j T ( u i  - -  U j ) n i )  : O. (16) 

For a significant deviation from zero, there must be 
internal motion. It is not always easy, however, to define 
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the nature of the internal coordinates from the zaU's 
alone. 

A second method of testing for internal motion is to 
perform a rigid body analysis and to analyze the residual 
tensors 

AU = Uob s -- U(rigid body). (17) 

If they are significant, the presence of intramolecular 
motion is indicated, but as in the case of AUij its nature 
may not be obvious. 

Both the above methods have additional shortcomings. 
The rigid molecule test provides incomplete information 
for planar molecules. It produces n(n - 1)/2 quantities, 
which are difficult to visualize. Similarly, rigid body 
analysis yields n difference tensors AU, 6n quantities in 
all. In order to facilitate their interpretation, we have 
developed the graphics program P E A N U T  (Hummel, 
Hauser & Biirgi, 1990), which allows to visualize mean 
square amplitude or root mean square amplitude surfaces 
(Nelmes, 1969) and corresponding difference surfaces 

AU(n) = nrA U n (18a) 

[ A U ( n ) ]  1/2 = [n TA U n ]  1/2, ( lSb )  

where n is a unit vector whose direction is systematically 
varied over the surface of a sphere. 

This representation is necessary because the difference 
tensors AU, unlike the U's themselves, are often 
nonpositive definite and can therefore not be represented 
as an equiprobability surface 

xrAU-I  x = const, (19) 

since they would take the form of open hyperbolic 
functions rather than closed equiprobability ellipsoids. 
Surfaces according to (18) are always closed. Visual 
inspection of the pictorial representation of AU's  can 
provide an indication of the relevant internal motions. 
Several examples have been discussed elsewhere 
(Hummel, Raselli & Biirgi, 1990). 

An entirely different method for identifying low- 
energy internal coordinates uses statistical analysis of 
atomic coordinates. Molecular fragments closely related 
to the molecule whose anisotropic displacement para- 
meters are to be analyzed are retrieved from the 
Cambridge Structural Database (CSD). Their equilibrium 
structures are compared and the principal deformations 
from a mean reference structure identified by principal 
component analysis (Taylor & Allen, 1994). The most 
important principal components may then be taken as 
models for the soft deformation coordinates (Biirgi & 
Dunitz, 1994) and introduced into the analysis of 
anisotropic displacement parameters. 

4. An example, HsSisOi2 

The tests outlined in §3.4 will now be illustrated for the 
spherosiloxane molecule H8SisOt2 (Fig. 3). H8Si8Oi2 

may be considered as a molecular model of one of the 
secondary zeolitic building blocks, consisting of a cube 
of eight Si atoms, whose 12 edges are bridged by O 
atoms and whose corners are substituted by H atoms. The 
crystallographic site symmetry is 3, but the molecular 
structure is very close to m3 symmetry. If it were not for 
the O atoms which are ca 0.1 A displaced from the 
diagonal mirror planes of the silicon cube, the molecule 
would show m 3 m  symmetry (Auf der Heyde, Biirgi, 
Btirgy & Trrnroos, 1991). 

4.1. H8Si8Ol2 is a f l ex ib le  molecu le  

AU's  between Si and O determined at 100 and 10K 
are listed in Table 1; they have been singled out, because 
they are the most revealing. Averaging with respect to 
the approximate m3 symmetry, there are 1,2-differences 
along the S i - - O  bonds, two types of nonbonded 
1,4-differences and one type of 1,6-difference. Except 
for the bonded 1,2-differences, A U's are all highly 
significant, indicative of intramolecular motion in 
H8Si8012. The value for the S i - - O  bond is practically 
temperature independent, as expected for a high-energy 
stretching coordinate; those for the nonbonded contacts 
decrease by 55% on lowering the temperature, as 
expected for low-energy coordinates. 

The rigid body analysis on U(Si) and U(O) gives 
goodness-of-fit (GOOF) values of 22 (100K) and 49 
(10K). The L and T tensor elements show large e.s.d.'s 
(Table 2). The diagonal elements of AU(Si) are 
consistently negative, those of AU(O) are positive. The 
large GOOF values and the systematics in AU both 
indicate the presence of internal motion. 

- 7  

Fig. 3. Observed anisotropic displacement parameters of H8Si8OI2 at 
100 K; root mean square amplitudes surfaces 2.5(nrU(obs)n) u2 [see 
equation (18b)]. H atoms are given in arbitrary size. 
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Table 1. Observed and calculated values A Usi  O along 
internuclear vectors 

d ( S i - - O )  ° AU(100K) (x]04 ,~2), A U ( 1 0 K )  ( x l 0  4 ,~)~ 
at 100 K (A) obst caic obst" caic 

1.62 I (1) 4 - 2  (I) 4 
3.71 82 (6) 81 38 (2) 37 
3.83 65 (5) 66 28 (3) 31 
5.08 68 (2) 68 34 (2) 33 

* Data from Auf der Heyde, Btirgi, Btirgy & Ttirnroos (1991). 
I" Averaged with respect to m3 symmetry, e.s.d, of the population. 

Data from Ti~mroos (1994). 

Fig. 4 shows a PEANUT plot of  [AU(Si ) ]  1/2 and 
[AU(O)] I/2 at 100K.  Two  observat ions  can be made  
immedia te ly :  (1) O x y g e n  shows excess  mot ion  (relative 
to the rigid body mode l )  in the di rect ion perpendicular  to 
the S i - - O - - S i  plane and along the S i - - O - - S i  bisector,  
but not a long the S i - - O  bond.  Si shows a defici t  o f  
mot ion  in all directions.  (2) The  pattern o f  A U ' s  shows 
noncrys ta l lographic  m3 symmet ry  in good  approxima-  
tion, indicat ing that the in t ramolecular  mot ion  is largely 
dictated by the approximate  molecu la r  and not by the 
crystal lographic  symmetry .  From the picture it is seen 
that angle bend ing  at oxygen  and torsion about  the 
S i - - O  bonds  may  be important ,  but we  have no idea 
how the 12 bend ing  and the 24 torsional coordina tes  are 
correlated. 

Thus,  as a next  step, the structures of  16 Si8012 
f ragments  were  re t r ieved f rom the CSD and analyzed  for 
distort ions f rom a reference structure of  m3m symmet ry ,  
the highest  symmet ry  the Si8012 f ragment  can attain. 

Fig. 4. Residual anisotropic displacement parameters of H8SisOt2 at 
100 K after subtraction of translational and librational contributions; 
root mean square amplitude surfaces 2.5[nr(U(obs) -U(T,L)n)] I/2 
[see equation (18b)]. Solid lines: positive difference; broken lines: 
negative difference. Note the negative residuals at Si and the oblate 
shape of the positive residuals at O. 

Table  2. Translation and libration tensor of H8Si8012 at 
100 and 10K ( a ) f r o m  Uob s and (b ) f rom Uob s after 

correction for internal motion 

100 K (a) (b) 
L~l = L22 (deg 2) 1.4 (7) 1.88 (5) 
L33 (deg 2) 1.7 (I.1) 1.81 (7) 
Ti I = T22 (,~2) 0.0091 (15) 0.0058 (1) 
T~ (,~2) 0.0090 (15) 0.0057 (1) 
GOOF 22.3 1.8 

1 0 K  
Lll = L22 (deg 2) 0.3 (3) 0.64 (5) 
L33 (deg 2) 0.5 (5) 0.74 (6) 
Tl I = T22 (,~2) 0.0047 (6) 0.0024 (1) 
T33 (~2) 0.0052 (6) 0.0028 (1) 
GOOF 48.6 7.6 

(a) 

• • l \ -  

Fig. 5. Schematic representation of the deformation modes of an rn3m- 
symmetric SisO~2-fragment built from rigid SiO 3 groups which are 
joined flexibly across the O atoms. (a) A2g deformation: can be 
described as a correlated rotation of the SiO 3 groups about the 
exocyclic bonds. (b) Eg deformation (one component only): 
essentially a compression along the vertical axis. (c) T2, deformation 
(one component only): can be described as a compression/elongation 
of the 04 squares of the top and bottom faces, which is antisymmetric 
relative to the horizontal mirror plane. 
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Three modes of distortion were found to account for 92% 
of all distortions present in the sample (Bieniok & Biirgi, 
1994); shown schematically in Figs. 5(a) and 5(b). They 
correspond to an A2s and a pair of E s distortions of a 
symmetric Si80!2 fragment. The former is a cooperative 
rotation of rigid SiO 3 fragments about the R- -S i  axes, 
changing mainly the S i - - O  torsion angles; the latter is 
essentially an expansion/compression along the fourfold 
axes of the reference structure; it deforms primarily the 
S i - - O - - S i  bond angles. From spectroscopy the force 
constants for S i - - O - - S i  angle bending and S i - - O  
torsional deformation were found to be small, much 
smaller than those for O - - S i - - O  bending and S i - - O  
stretching (B~irtsch, Bornhauser, Calzaferri & Imhof, 
1994). 

The following model of molecular flexibility is 
consistent with all the above observations about static 
molecular deformations: The SiO 3 fragments in the 
H8Si8OI2 cage are essentially rigid, but joined flexibly by 
O atoms which act as hinges or ball joints. The 20-atom 
fragment Si80~2 has 3 x 20 - 6 = 54 degrees of free- 
dom. For rigid SiO3 fragments, 24 S i - -O  distances and 
24 O - - S i - - O  angles may be taken as fixed. A 
symmetry analysis shows that the remaining six degrees 
of freedom transform as A28, E s and T2u irreducible 
representations of m3m [A s, Es and T u of m3; Figs. 5(a)- 
(c)]. The A2s and Eg molecular deformations are very 
similar to those identified in the statistical analysis of 16 
Si80~2 fragments (Bieniok & B0rgi, 1994). 

In summary, the nonrigidity of H8Si8012 has been 
established from the observed U's of Si and O. The 
intramolecular deformation modes have been identified 
from (1) a statistical analysis of the equilibrium structures 
of R8Si8012 molecules and (2) a symmetry analysis of 
the deformation modes of a Si80~2 fragment built from 
rigid SiO 3 groups, joined flexibly across the O atoms. 

4.2. Interpreting the anisotropic displacement para- 
meters of H8Si8012 measured at 100 K 

From §3 there are two options to interpret the 
anisotropic displacement parameters. One is to determine 
Z" [see equation (12)], taking into account translation, 
libration, angle deformation at oxygen (two Eg and three 
7",, deformations) and torsion about the S i - - O  bonds 
(one A s deformation). From Z" the normal vibrations 
may be calculated using (10), provided all elements of Z" 
can be obtained from the least-squares calculation (13). 

An alternative is to use the force constants for S i - - O  
stretching, O - - S i - - O  bending, H- -S i  stretching and 
H - - S i - - O  bending obtained from a vibrational normal 
coordinate analysis (B~irtsch, Bornhauser, Calzaferri & 
Imhof, 1994), to systematically vary the force constants 
for S i - - O - - S i  bending and S i - - O  torsion and to 
calculate the eigenvalues and eigenvectors according to 
(6). From the eigenvectors are calculated the contribu- 
tions to the atomic U's which are due to the internal 
motions alone. From these, the AU's  along internuclear 

Table 3. Frequencies and force constants for the low- 
energy normal modes from mean square amplitudes and 

vibrational normal coordinate analysis 

Mode 1OO K 10 K* IR/Raman' l  
A s (cm -t ) 49 (49) 57~: 
E~ (cm -I ) 75 (75) 84~ 
T u (cm -I ) 62 (62) 68+ 
L(T s ) (cm- t ) 47,47,48 45,45,37 - -  
T(T,)  (cm -j ) 32,32,32 19,19,17 - -  
f ( S i - - O - - S i )  (mdyn .~) 0.077 0.091 
f (SiO-SiO) (mdyn A) 0.0034 0.(KI40 

* Frequencies determined from mean square amplitudes at 100K 
predict the AUsi o values at 10K, see Table 1. 

~" From B~irtsch, Bornhauser,  Calzaferri & Imhof  (1994). 
++ Calculated. 
§ Observed.  

vectors are obtained (16) and compared with the 
experimental quantities (Raselli, 1991). 

For the present analysis of H8Si80~2, the latter 
alternative was chosen, because zaU values tend to be 
less affected by systematic error than the U's themselves 
(Chandrasekhar & B~irgi, 1984). The calculations were 
performed with a locally modified version of the program 
ASYM20 (Hedberg & Mills, 1993). 

The S i - - O - - S i  bending and the S i - -O  torsion force 
constants were fitted to reproduce the three nonbonded 
AU values measured at 100 K. It is pleasing to note that 
the same force constants predict corresponding values 
obtained at 10 K (Table 1). 

As a further test of these calculations, the observed 
anisotropic displacement parameters were corrected for 
all internal motion according to 

AU = Uob s -- U(internal motion), (20) 

and the residuals AU subjected to rigid body analysis. 
The translational amplitudes are now substantially 
smaller, all e.s.d's have decreased and the goodness-of- 
fit quantities are significantly better (Table 2), although 
not completely satisfactory. 

Finally, in Table 3, the frequencies of intramolecular 
motion obtained from anisotropic displacement para- 
meters are compared with those measured by IR and 
Raman spectroscopy or calculated from (6). The spectro- 
scopic values are bigger by 8 cm -l on average, but their 
ordering is the same as that obtained from anisotropic 
displacement parameters. 

Correspondingly, the force constants from anisotropic 
displacement parameters are somewhat smaller than 
those from spectroscopy. The librational and translational 
frequencies may only be compared between the two 
temperatures. The agreement is better for libration than 
for translation. This is not entirely unexpected since the 
two measurements were performed on different crystals 
with different instruments (Trrnroos, 1994) and corre- 
sponding systematic differences between anisotropic 
displacement parameters tend to accumulate in T 
(Chandrasekhar & Biirgi, 1984). It is too early to say, 
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however, whether the difference must be attributed 
entirely to systematic errors in the anisotropic displace- 
ment parameters or whether the model used for their 
interpretation is also insufficient. 

5. Postscript 

Given that this account was written for the symposium 
'New Trends in Small Moiety Crystallography', it 
seemed admissible to present some ideas and their 
possible consequences, without providing at the same 
time a comprehensive test of  their feasibility and an 
exhaustive documentation of difficulties. It nevertheless 
seems to emerge that an uncompromising application of 
normal coordinate analysis - either in vibrational 
frequency or in mean square amplitude form, or in a 
combination of both forms - will lead to a better 
understanding of anisotropic displacement parameters, to 
a visualization of the cooperative displacements of atoms 
in molecules which are considered to be embedded in the 
mean field of their crystalline environment, and to an 
appreciation of the forces governing such motion. 
Combining frequency with mean square amplitude data 
seems particularly promising, because the two types of 
data are complementary: high frequency vibrations are 
relatively easy to measure and to assign by spectroscopic 
techniques; they are least affected by the molecular 
environment (Decius & Hexter, 1977) and their con- 
tribution to the mean square amplitudes is relatively 
small (except for light atoms such as hydrogen). Low- 
frequency vibrations are more difficult to obtain from 
spectroscopy, but are the main contributors to the mean 
square amplitudes and are therefore more easily 
accessible from Bragg scattering experiments. 

Thanks are due to K. W. TiSmroos for unpublished 
data, to M. Ftirtsch for help with the literature and for 
calculations and to the 'Schweizerischer Nationalfonds' 
for financial support. 
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